FAOs \& their solutions for Module 3:
 Linear Harmonic Oscillator

Question1: At $t=0$, a linear harmonic oscillator is described by the wave function

$$
\begin{equation*}
\Psi(x, 0)=\frac{1}{\sqrt{3}} \psi_{0}(x)+i \sqrt{\frac{2}{3}} \psi_{2}(x) \tag{1}
\end{equation*}
$$

where $\psi_{n}(x)$ are the normalized eigenfunctions of the Schrodinger equation for the linear harmonic oscillator problem.
(a) Is the wave function normalized???
(b) Write the wave function describing the time evolution of $\Psi x, 0$.
(c) If we make a measurement of energy, what will be the probabilities of finding it in the ground state (with $E=\frac{1}{2} \hbar \omega$), first excited state (with $E=\frac{3}{2} \hbar \omega$) and the second excited state (with $E=\frac{5}{2} \hbar \omega$),?
(d) Calculate the average energy value.

Solution1:

(a) The eigen functions satisfy the following orthonormality condition

$$
\int_{-\infty}^{+\infty} \psi_{m}^{*}(x) \psi_{n}(x) d x=\delta_{m n} ; m, n=0,1,2, \ldots
$$

Using the above orthonormality condition, one can easily show that

$$
\int_{-\infty}^{+\infty}|\Psi(x, 0)|^{2} d x=1
$$

Thus the wavefunction is normalized.
(b) Since $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$, we will have $\exp \left[-\frac{i E_{n} t}{\hbar}\right]=\exp \left[-i\left(n+\frac{1}{2}\right) \omega t\right]$. Thus the time evolution of the wave function would be given by

$$
\Psi(x, t)=\frac{1}{\sqrt{3}} \psi_{0}(x) e^{-i \omega t / 2}+i \sqrt{\frac{2}{3}} \psi_{2}(x) e^{-5 i \omega t / 2}
$$

(c) If we make a measurement of energy, there will be $\left(\frac{1}{3}\right)^{\text {rd }}$ probability of finding it in the ground state (with $E=\frac{1}{2} \hbar \omega$), zero probability of finding it in the second excited state (with $E=\frac{3}{2} \hbar \omega$) and $\left(\frac{2}{3}\right)^{\text {rd }}$ probability of finding it in the second excited state (with $E=\frac{5}{2} \hbar \omega$).
(d) The average energy will be given by

$$
\begin{aligned}
\langle E\rangle & =\frac{1}{3}\left(\frac{1}{2} \hbar \omega\right)+\frac{2}{3}\left(\frac{5}{2} \hbar \omega\right) \\
& =\frac{11}{6} \hbar \omega
\end{aligned}
$$

Question2: For the linear harmonic oscillator problem, write $\Psi(x, t)$ in the following form

$$
\begin{equation*}
\Psi(x, t)=\int_{-\infty}^{+\infty} K\left(x, x^{\prime}, t\right) \Psi\left(x^{\prime}, 0\right) d x^{\prime} \tag{2}
\end{equation*}
$$

where $K\left(x, x^{\prime}, t\right)$ is known as the propagator. Derive an expression for $K\left(x, x^{\prime}, t\right)$.
Solution 2: The most general solution of the Schrodinger equation for the linear harmonic oscillator problem is given by

$$
\begin{equation*}
\psi(x, t)=\sum_{n=0,1, \ldots}^{\infty} c_{n} \psi_{n} x \exp \left[-\frac{i E_{n} t}{h}\right] \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
\Psi \quad x, t=\sum_{n=0,1, \ldots}^{\infty} c_{n} \psi_{n}(x) e^{-i\left(n+\frac{1}{2}\right) \omega t} \tag{4}
\end{equation*}
$$

If we know $\Psi x, 0$, we can determine $\Psi(x, t)$ as follows:

$$
\Psi x, 0=\sum_{n=0,1, \ldots}^{\infty} \quad c_{n} \quad \psi_{n} x
$$

we multiply the above equation by $\psi_{m}{ }^{*}(x)$ and integrate to obtain

$$
c_{n}=\int_{-\infty}^{+\infty} \psi_{n}^{*} x^{\prime} \Psi \begin{array}{lll}
x^{\prime}, 0 & d x^{\prime}
\end{array}
$$

where we have used the orthonormality condition. If we substitute the above expression for c_{n} in

$$
\Psi x, t=\sum_{n=0,1, \ldots}^{\infty} c_{n} \psi_{n}(x) e^{-i\left(n+\frac{1}{2}\right) \omega t}
$$

we may write it in the form:
$\Psi(x, t)=\int_{-\infty}^{+\infty} K\left(x, x^{\prime}, t\right) \Psi\left(x^{\prime}, 0\right) d x^{\prime}$
where

$$
\begin{aligned}
K\left(x, x^{\prime}, t\right) & =\sum_{n=0,1, \ldots}^{\infty} \psi_{n}^{*}\left(x^{\prime}\right) \psi_{n}(x) \exp \left[-i\left(n+\frac{1}{2}\right) \omega t\right] \\
& =\sum_{n=0,1, \ldots}^{\infty}\left|N_{n}\right|^{2} H_{n} \xi^{\prime} H_{n} \xi \exp \left[-\frac{1}{2} \xi^{2}+\xi^{\prime 2}-i\left(n+\frac{1}{2}\right) \omega t\right]
\end{aligned}
$$

The above summation can be carried out and the final result is

$$
K\left(x, x^{\prime}, t\right)=\frac{\gamma}{(2 \pi i \sin \omega t)^{1 / 2}} \exp \left[-\frac{\gamma^{2}}{2 i \sin \omega t}\left(x^{2}+x^{\prime 2}\right) \cos \omega t-2 x x^{\prime}\right]
$$

Question3: Show that the function

$$
\psi(x)=A e^{-b x^{2}}
$$

satisfies the Schrodinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 \mu}{\hbar^{2}}\left[E-\frac{1}{2} \mu \omega^{2} x^{2}\right] \psi(x)=0
$$

for a particular value of b; determine the value of b and the corresponding value of the energy eigenvalue.

Solution 3:

$$
\frac{d^{2}}{d x^{2}} e^{-b x^{2}}=\frac{d}{d x}-2 b x e^{-b x^{2}}=4 b^{2} x^{2}-2 b e^{-b x^{2}}
$$

Substituting in the Schrodinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 \mu}{\hbar^{2}}\left[E-\frac{1}{2} \mu \omega^{2} x^{2}\right] \psi(x)=0
$$

we get

$$
4 b^{2} x^{2}-2 b+\frac{2 \mu}{\hbar^{2}}\left[E-\frac{1}{2} \mu \omega^{2} x^{2}\right]=0
$$

For the above equation to be valid for all values of x, we must have $b=\frac{1}{2} \frac{\mu \omega}{\hbar} \quad$ and $\quad E=\frac{b \hbar^{2}}{\mu}=\frac{1}{2} \hbar \omega$.

Question4: Show that the function $e^{-c x^{4}}$ can never be an eigenfunction of the Schrodinger equation.
Solution4:

$$
\frac{d^{2}}{d x^{2}} e^{-c x^{4}}=\frac{d}{d x}-4 c x^{3} e^{-c x^{4}}=16 c^{2} x^{6}-12 c x^{2} e^{-c x^{4}}
$$

Substituting in the Schrodinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 \mu}{\hbar^{2}}\left[E-\frac{1}{2} \mu \omega^{2} x^{2}\right] \psi(x)=0
$$

we get

$$
16 c^{2} x^{6}-12 c x^{2}+\frac{2 \mu}{\hbar^{2}}\left[E-\frac{1}{2} \mu \omega^{2} x^{2}\right]=0
$$

which can never be satisfied. Thus $e^{-c x^{4}}$ can never be an eigenfunction of the Schrodinger equation.

Question5: The probability distribution for a coherent state is given by

$$
|\Psi(x, t)|^{2}=\frac{\gamma}{\sqrt{\pi}} \exp \left[-\xi-\xi_{0} \cos \omega t^{2}\right]
$$

Calculate $\langle x\rangle,\left\langle x^{2}\right\rangle$ and $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$.
Solution5: The probability distribution is given by

$$
\begin{equation*}
|\Psi(x, t)|^{2}=\frac{\gamma}{\sqrt{\pi}} \exp \left[-\xi-\xi_{0} \cos \omega t^{2}\right] \tag{5}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=1 \tag{6}
\end{equation*}
$$

for all values of t, as it indeed should be. Now

$$
\langle x\rangle=\int_{-\infty}^{+\infty} \Psi^{*}(x, t) x \Psi(x, t) d x=\int_{-\infty}^{+\infty} x|\Psi(x, t)|^{2} d x
$$

Simple integrations will give us

$$
\begin{equation*}
\langle x\rangle=x_{0} \cos \omega t \tag{7}
\end{equation*}
$$

where

$$
x_{0}=\frac{1}{\gamma_{0}} \xi
$$

Further

$$
\begin{gather*}
\left\langle x^{2}\right\rangle=\int_{-\infty}^{+\infty} x^{2}|\Psi(x, t)|^{2} d x=x_{0}^{2} \cos ^{2} \omega t+\frac{1}{2 \gamma^{2}} \tag{8}\\
\Delta x=\sqrt{\left\langle x^{2}>-\langle x\rangle^{2}\right.}=\sqrt{\frac{\hbar}{2 \mu \omega}}
\end{gather*}
$$

Question6: The Schrodinger equation for the linear harmonic oscillator can be written as

$$
\frac{d^{2} \psi}{d \xi^{2}}+\left[\Lambda-\xi^{2}\right] \psi \quad \xi=0
$$

where $\xi=\gamma x$ and $\gamma=\sqrt{\frac{\mu \omega}{\hbar}}$. Make the transformation $\eta=\xi^{2}$ and look for the solution as $\eta \rightarrow \infty$ and obtain solutions in terms of confluent hypergeometric functions.
Solution6: We will obtain the solution of the following equation

$$
\begin{equation*}
\frac{d^{2} \psi}{d \xi^{2}}+\left[\Lambda-\xi^{2}\right] \psi \quad \xi=0 \tag{10}
\end{equation*}
$$

We introduce the variable

$$
\begin{equation*}
\eta=\xi^{2} \tag{11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d \psi}{d \xi}=\frac{d \psi}{d \eta} \frac{d \eta}{d \xi}=\frac{d \psi}{d \eta} 2 \xi \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \psi}{d \xi^{2}}=4 \eta \frac{d^{2} \psi}{d \eta^{2}}+2 \frac{d \psi}{d \eta} \tag{13}
\end{equation*}
$$

Substituting in Eq. (8), we obtain

$$
\begin{equation*}
\frac{d^{2} \psi}{d \eta^{2}}+\frac{1}{2 \eta} \frac{d \psi}{d \eta}+\left[\frac{\Lambda}{4 \eta}-\frac{1}{4}\right] \psi(\eta)=0 \tag{14}
\end{equation*}
$$

In order to determine the asymptotic form, we let $\eta \rightarrow \infty$ so that the above equation takes the form

$$
\frac{d^{2} \psi}{d \eta^{2}}-\frac{1}{4} \psi(\eta)=0
$$

the solution of which would be $e^{ \pm \frac{1}{2} \eta}$. This suggests that we try out the following solution

$$
\begin{equation*}
\psi \eta=y \eta e^{-\frac{1}{2} \eta} \tag{15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{d \psi}{d \eta}=\left[\frac{d y}{d \eta}-\frac{1}{2} y\right] e^{-\frac{1}{2} \eta} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} \psi}{d \eta^{2}}=\left[\frac{d^{2} y}{d \eta^{2}}-\frac{d y}{d \eta}+\frac{1}{4} y(\eta)\right] e^{-\frac{1}{2} \eta} \tag{17}
\end{equation*}
$$

Substituting the above equations in Eq. (12) we get

$$
\begin{equation*}
\eta \frac{d^{2} y}{d \eta^{2}}+\left(\frac{1}{2}-\eta\right) \frac{d y}{d \eta}+\frac{\Lambda-1}{4} y(\eta)=0 \tag{18}
\end{equation*}
$$

Now the confluent hypergeometric equation is given by

$$
\begin{equation*}
x \frac{d^{2} y}{d x^{2}}+c-x \frac{d y}{d x}-a y(x)=0 \tag{19}
\end{equation*}
$$

where a and c are constants. For $c \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots$ the two independent solutions of the above equation are

$$
\begin{equation*}
y_{1}(x)={ }_{1} F_{1} a, c, x \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2}(x)=x^{1-c}{ }_{1} F_{1} a-c+1,2-c, x \tag{21}
\end{equation*}
$$

where ${ }_{1} F_{1} a, c, x$ is known as the confluent hypergeometric function and is defined by the following equation

$$
\begin{equation*}
{ }_{1} F_{1} a, c, x=1+\frac{a}{c} \frac{x}{1!}+\frac{a(a+1)}{c(c+1)} \frac{x^{2}}{2!}+\frac{a(a+1)(a+2)}{c(c+1)(c+2)} \frac{x^{3}}{3!}+\ldots . . \tag{22}
\end{equation*}
$$

Obviously, for $a=c$ we will have

$$
\begin{equation*}
{ }_{1} F_{1} a, a, x=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots . .=e^{x} \tag{23}
\end{equation*}
$$

Thus although the infinite series in Eq. (20) is convergent for all values of x, it would blow up at infinity. Indeed the asymptotic form of ${ }_{1} F_{1} a, c, x$ is given by

$$
\begin{equation*}
{ }_{1} F_{1} a, c, x \underset{x \rightarrow \infty}{\rightarrow} \frac{\Gamma(c)}{\Gamma(a)} x^{a-c} e^{x} \tag{24}
\end{equation*}
$$

The confluent hypergeometric series ${ }_{1} F_{1} a, c, x$ is very easy to remember and its asymptotic form is easy to understand. Returning to Eq. (16), we find that $y(\eta)$ satisfies the confluent hypergeometric equation with

$$
\begin{equation*}
a=\frac{1-\Lambda}{4} \text { and } c=\frac{1}{2} \tag{25}
\end{equation*}
$$

Thus the two independent solutions of Eq.(8) are

$$
\begin{equation*}
\psi_{1}(\eta)={ }_{1} F_{1}\left(\frac{1-\Lambda}{4}, \frac{1}{2}, \eta\right) e^{-\frac{1}{2} \eta} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{2}(\eta)=\sqrt{\eta}_{1} F_{1}\left(\frac{3-\Lambda}{4}, \frac{3}{2}, \eta\right) e^{-\frac{1}{2} \eta} \tag{27}
\end{equation*}
$$

We must remember that $\eta=\xi^{2}$. Using the asymptotic form of the confluent hypergeometric function, one can readily see that if the series does not become a polynomial then, as $\eta \rightarrow \infty, \psi(\eta)$ will blow up as $e^{\frac{1}{2} \eta}$. In order to avoid this, the series must become a polynomial. Now $\psi_{1}(\eta)$ becomes a polynomial for $\Lambda=1,5$, $9,13, \ldots$ and $\psi_{2}(\eta)$ becomes a polynomial for $\Lambda=3,7,11,15$. Thus only when

$$
\begin{equation*}
\Lambda=1,3,5,7,9, \ldots \tag{28}
\end{equation*}
$$

we will have a well behaved solution of Eq. (8) - these are the eigenvalues of the Schrodinger equation. The corresponding wavefunctions are the Hermite Gauss functions:

$$
\begin{equation*}
\psi(\xi)=N H_{m}(\xi) \exp \left(-\frac{1}{2} \xi^{2}\right) ; \quad m=0,1,2,3, \ldots \tag{29}
\end{equation*}
$$

Indeed

$$
\begin{equation*}
H_{n}(\xi)=(-1)^{n / 2} \frac{n!}{\left(\frac{n}{2}\right)!} F_{1}\left(-\frac{n}{2}, \frac{1}{2}, \xi^{2}\right) \text { for } n=0,2,4, \ldots \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n}(\xi)=(-1)^{(n-1) / 2} \frac{n!}{\left(\frac{n-1}{2}\right)!} 2 \xi_{1} F_{1}\left(-\frac{n-1}{2}, \frac{3}{2}, \xi^{2}\right) \text { for } n=1,3,5, \ldots \tag{31}
\end{equation*}
$$

